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Scattering amplitudes involving two- and three-particle states are continued across the inelastic section 
of the unitarity cut, and the singularities in the unphysical sheets thus reached are determined. Associated 
with an unstable particle is a complex unitarity cut, through which we further continue into another un­
physical sheet. Dynamical singularities associated with a Born-type diagram for the three-particle scattering 
amplitude are found to be present in the elastic scattering and the production amplitudes also because of the 
coupling by unitarity. These singularities are isolated from the physical region by the complex unitarity cut 
and thus cannot be directly responsible for any resonance phenomenon. However, if the interaction force 
is favorable, a resonance pole can occur in a different Riemann sheet in the vicinity of these singularities. 
This resonance pole is directly accessible from the physical region and can therefore give rise to a resonance. 

I. INTRODUCTION 

STUDY of the analytic properties of scattering 
amplitudes has recently been extended to processes 

involving multiparticle final states. Attempts have been 
made1,2 to incorporate unstable particles into the 
^-matrix theory. Specifically, several authors3"6 have 
considered the problems concerning pion-nucleon scat­
tering and production processes in the approximation 
that different pairs of particles in a three-particle 
channel are replaced by their respective resonant states; 
thus, one treats essentially a multichannel system, each 
channel consisting of only two particles. 

In this paper, we also consider scattering amplitudes 
involving two- and three-particle states, but instead of 
studying the analyticity in the physical sheet only with 
the energy of a resonant state being replaced by the 
complex mass of the associated unstable particle, we 
extend our consideration of the analyticity of the 
amplitudes to the unphysical sheets, which are con­
nected with the physical sheet by the three-particle 
unitarity cut. The analytic continuation is effected by 
use of the unitarity condition appropriate for energies 
above the production threshold. Without making 
specifically the "isobar approximation," we find the 
locations of the singularities of the amplitudes in the 
Riemann surface; in this way, we can determine the 
relevance of some of the singularities to resonances 
observed at higher energies. 

Peierls7 has proposed an isobar model to account for 
the second pion-nucleon resonance. In this model, the 
principal mechanism that generates the resonance is 
the singularity associated with a diagram where ir and 

* Research supported in part by the U. S. Air Force Office of 
Scientific Research. 

f Present address: Lawrence Radiation Laboratory, University 
of California, Berkeley, California. 

1 H. P. Stapp, Lawrence Radiation Laboratory Report UCRL-
10261, 1962 (unpublished). 

2 D. Zwanziger, Phys. Rev. (to be published). 
3 P. G. Federbush, M. T. Grisaru, and M. Tausner, Ann. Phys. 

(N. Y.) 18, 23 (1962). 
4 S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker, 

Ann. Phys. (N. Y.) 18, 198 (1962). 
5 L. F. Cook, Jr., and B. W. Lee, Phys. Rev. 127,283,297 (1962). 
6 J. S. Ball, W. R. Frazer, and M. Nauenberg, Phys. Rev. 128, 

478 (1962). 
7 R. F. Peierls, Phys. Rev. Letters 6, 641 (1961). 

2V* are scattered via the exchange of a nucleon, TV"* 
being the 3-3 resonance state. Later, Goebel8 raised the 
question concerning the location of that singularity in 
the Riemann surface. I t was claimed that for amplitudes 
involving stable incident particles, the singularity is 
not near the physical region and, therefore, cannot be 
responsible for a resonance in a physical process. 

One of our aims in this work is to examine in detail 
Peierls' isobar mechanism and GoebePs criticism. We 
find that the singularity under discussion is located at 
such a position in an unphysical sheet that it cannot 
directly enhance the scattering amplitude in the 
physical region, but for a state involving suitable 
dynamical forces a resonance pole can arise in another 
unphysical sheet, which can be reached directly from 
the physical region and is, indeed, responsible for an 
observable resonance. 

In Sec. I I we describe the choice of scattering ampli­
tudes for processes involving two- and three-particle 
states, and derive the unitarity condition that is valid 
for energies below the four-particle threshold. The 
integral equations stating the unitarity condition are 
then used in Sec. I l l in the analytic continuation of the 
amplitudes across the three-particle cut into the un­
physical sheets, in which are found complex "unitarity" 
cuts corresponding to channels that have two particles 
each, one stable and the other unstable. In Sec. IV we 
investigate the dynamical singularities associated with 
simple diagrams; they give rise to other singularities 
in the unphysical sheets, their locations being deter­
mined in Sec. V. Further continuation across the 
complex unitarity cut into other unphysical sheets is 
considered in Sec. VI, and the existence of resonance 
poles there is studied in Sec. VII. The last section 
contains some concluding remarks about this work. 

II. UNITARITY CONDITION 

To be specific, let us consider the pion-nucleon scat­
tering problem. Since the energy range of interest to us 
does not extend much beyond the one-pion production 
region, we are concerned mainly with the two channels: 
ir+N and TT+7T+N. For simplicity, we ignore the spin 

8 C. Goebel (unpublished). 
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of the imcleon and the isotopic spins of all the particles; 
these assumptions do not in any way affect the essence 
of our study of the dynamics of the problem. 

For a three-particle state iri(ki)+T2(k2)+N(p), 
where the symbols inside the parentheses denote the 
four-momenta, we define the invariant variables as 
follows: 

s=-(p+k1+k2y, 
a=-(p+kly, (2.1) 
co=-(£H-&2)2. 

Thus, s is the square of the total c m . energy of the 
three-particle system, <T the cm. energy squared of the 
nucleon and the first pion (we assume that the pions 
are distinguishable), and co the same for the two-pion 
system. We use s, cr, and the appropriately chosen 
angular variables9 to specify the configuration of the 
three-particle system. 

The unitarity condition may be expressed in various 
forms depending upon the choice of the transition 
amplitudes.1,2,5 '6,10,n The amplitude T33, describing the 
transition between one three-particle state and another, 
may be decomposed into connected and disconnected 
parts : 

r33=r33*+E7V>s 

where T%zDi corresponds to the diagram in which the 
ith particle does not interact with the others. For 
definiteness let xi, 7r2, and N be labeled by i= 1, 2, and 
3, respectively. With s and a being chosen as the energy 
variables, it is convenient to isolate only the Tz$D2 

amplitude and define 

W^Tzi-TiJ*. (2.2) 

In terms of T%-f' the unitarity condition takes the 
form5,6 (subscripts of T indicating the number of 
particles in the initial and final states) 

T22(s+)-T22(s-) = 2i^T22(s+)T22(s~) 

+ 2i Z T2,{s+, a"+)TZ2(s-, c r " - ) , (2.3) 

Tn(s+, a)-T32(s-, <r) = 2i £ r 3 2 ( s + , <r)T22(s-) 
+2iZT^cf(s+, cr, a"+)TZ2(s~, < / ' - ) , (2.4) 

TMC'(S+,CT,<7')-TMC'(S-,a,*') 

= 2ij:Tz2(s+,<T)T2d(s-,a/) 

+ 2i L T^f(s+, cr, a'r+^'is-, c r " - , <r'), (2.5) 

where the angular variables have been suppressed and 
the + ( —) signs following s and cr imply that the values 
are to be taken just above (below) the real axes. The 
summation signs denote integrations over the phase 
space of the intermediate states. The derivation of 
(2.4) and (2.5) is based on the assumption that r 3 2 

9 The angular variables are those that specify the directions of 
the vector k 1 +p in the cm. system of the s channel and of the 
vector p in the cm. system of the cr channel. 

10 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 
11 R. Blankenbecler, Phys. Rev. 122, 983 (1960). 

and r 3 3 satisfy the following subsidiary conditions, 
when s, a and cr' have physical values, 

TM(S, cr+) — TZ2(s, c r - ) 

= 2i2W>»(s, cr+, <r"+)TZi(s, c r " - ) , (2.6) 

Tn(s,e+,</)-Tn(s,<r-y) 
= 2*2W>»(s, H " , c r " + ) r 3 3 ( s , c r " - , cr'), (2.7) 

and 

r 3 3 (^ ,cr ,c r '+) - r 3 3(5 ,cr ,c r ' - ) 

= 2ir3 3(s, cr, v"+)TnD*(s, c r " - , c r ' - ) , (2.8) 

where 

^ ' ( w O ^ ^ ^ c r ) 

= (27r)353(k2-k2 ')r22(cr). (2.9) 

Some simplification of the unitarity condition may 
be achieved by expressing the transition amplitudes in 
the angular momentum representation. Just as in the 
case of a two-particle state which can be expanded in 
the Legendre series in the usual way, the same can be 
done for the 7rH-iV system in its own rest frame. In this 
way, the three-particle state may be regarded as having 
only two particles, one being TT2, the other having rest 
mass a112 and spin ly where I is the orbital angular 
momentum of the iri+N system. The helicity ampli­
tudes for transitions involving three-particle states 
can then be obtained in the way as shown in reference 
5. For given values of total c m . energy s112 and total 
angular momentum / , a two-particle elastic scattering 
amplitude is characterized by no other variables or 
quantum numbers, whereas a production amplitude is 
specified in addition by cr, /, and m, the last being the 
z component of I. (Conservation of such quantum 
numbers as strangeness and baryon number is taken 
to be understood.) Thus, the unitarity condition, when 
expressed in terms of the partial-wave amplitudes, 
obtains the very simple form where only the three-
particle intermediate states involve integrations over 
cr and summations over I and m. 

Among all the possible three-particle states, let us 
consider only that in which the irx+'N system can have 
a resonance in a particular I state, and assume that the 
amplitudes for all the other / values are negligible in 
strength. For the sake of clarity, let us further assume 
that the resonance occurs in the 1=0 state so that 
among all the production and three-particle scattering 
amplitudes, we need only retain the ones corresponding 
to Z=0 and m=0. These assumptions are made only 
for the purpose of simplifying the notations in the 
problem, and do not affect any of our conclusions about 
the locations of the dynamical singularities in the 
Riemann surface. 

In terms of the partial-wave amplitudes, 

Tfi
J=2TT Tfi(6, <p=Q)Pj(cosd)dcos6, (2.10) 
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where 8 is the scattering angle between nucleons [~or Time-reversal and space-reflection invariances imply 
(TIN)'] in the over-all center-of-mass system, let us that B(s,<r) is also equal to Tz2

J(s,a)/a(a) and that 
define C(s,(r,<r') = C(s,<r',<r). By construction, B(s,a) and 

A(s)z=T J(s) a(o-)=T 2l=0(<r) CCW0"') have no discontinuities in a and <r' when these 
variables are in the physical region. With the masses 

B(sJa) = T2z
J(sJa)/a(a), (2.11) o f t h e n u c l e o n a n d t h e p i o n denoted by N and fx, 

C (s,a}a
f) = Tzzc''J (s,<r,<r')/a (a)a (af). respectively, the unitarity condition now becomes 

da"pt(s+, «r") 
-0 

Xdls- (N+2tfla(a"+)a(a"-)B(s+, <r")B{s-, </'), (2.12) 

B(s+, <r)-B(s-, <r) = 2ipi(s+)0[s- (N+»y]B(s+, *)A(s-)+2i I da"Pi(s+, a") 

X 0 O - ( iV+2M)2>(<r"+)a((7"-)C(5+ ) <r, <r")B(s-, a"), (2.13) 
/•oi(«+) 

C(s+, er, <r')-C(s-, a, <r') = 2iPl(s+)d[s- (N+nyjB(s+, <r)B(s-, a')+2i d<r"p2(s+, a") 

Xdls- (N+2»)*]a(cr"+)a(<T"-)C(s+, <r, *")C(s-, <r", a'), (2.14) 

where the limits of the integrations are 

<r0= (i\H-M)2, *i(s)= &»-?)>. 

The phase-space factors are 

Pl(s) = k(s,Ni)/32ir*s1'2, 

Pi(s,<7) = Hs,a)q(<T)/32(2iry(scryi\ 
where 

k(s,m*) = [_s- {m+nYJ^ls- ( W - M ) 2 ] 1 / 2 A 1 / 2 , 
mi—N'i or <r, 

?(<r) = [o— (#+M )J] i /»[y_ (7V-M)2]1 'V2<71 '2 . 

III. UNPHYSICAL SHEETS 

(2.15) 

(2-16) 

(2.17) 

(2.18) 

(2.19) 

As a function of the complex variable s, pi(s) has 
square-root branch points at s= (N+fx)2 and (N—p,)2. 
We cut the s plane along the real axis from (N+p,)2 

to + oo and from (N—p)2 to — °o; thus pi(s) satisfies 
the reflection property 

P i « = - * * ( * * ) . (3.1) 

For a fixed value of a, P2 (?,</) likewise has branch points 
at s= (all2dtp)2, which we join with ± oo by branch 
lines in a similar manner. The corresponding reflection 
property is 

P « M = - V ( ^ ) . (3.2) 
On the other hand, for a fixed value of s, P2(s,v) has 
four branch points in the cr plane; they are c = (^1/2±/x)2 

and (Nztp,)2. We cut the a plane by three branch lines 

which join - oo to (N-fx)2, (N+p,)2 to (sll2-p,)2, and 
(s1/2+/z)2 to + oc. I t is evident that (3.2) is thereby 
also satisfied in the a plane. 

The physical branches are defined to be those in 
which the values of pi(s=N2), p2(s=<r,a), and 
p2(s, a—s) are all positive imaginary. In these branches 
physical values of pi(s) and p2(s,<r) are obtained when 
s approaches the real axis from above and is greater 
than (N+p)2 and (<71/2+^)2, respectively, provided that 
in the second case a is real and greater than (N+p,)2. 
In the a plane, the physical region is just below the cut 
between (N+p)2 and (s1/2—p)2. Let us use ar (a{) to 
indicate the value of <r on the right (left) side of this 
cut as one views in the direction from (N+p)2 to 
(s1,2—p)2\ this definition is useful even when s is com­
plex. I t is clear that in (2.12)-(2.14) the integrations 
in a" should be instructed to be performed on the right 
side of the cut in p2(s+,(r"); thus ar" is implied in 
the argument. 

We note that the left-hand sides of the equations, 
(2.12)—(2.14), are antisymmetric under the interchange 
of s+ and s—. In view of (3.1), (3.2), and the fact that 
the phase-space factors are real in the physical region, 
we see that the right-hand sides of (2.12) and (2.14) 
are also antisymmetric provided that 

p8(H-, */')<-»P2(*-,<ri") (3.3) 

when s+ and s— are interchanged. Indeed, (3.3) is 
required if the contour of integration is to remain 
unchanged. Considerations of this nature lead to an 
alternative form of (2.13) 

r<n(s—) /»0T 

B(s+, o)-B(s-, <T)=-2iPl(s-)dZs-(N+»y]B(s-, o)A(s+)-2i\ da"Pi{s-, <n") 

Xels-(N+2v¥la(<T"+)a(<r"-)C(s-,a,<T")B(s+,<T"). (3.4) 
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We now wish to continue the partial-wave scattering 
amplitudes across the physical cut in the s plane into 
the unphysical sheets by means of the unitarity 
relations (2.12)-(2.14). Let us use the subscript u to 
label the amplitudes in the first unphysical sheet that 
is reached by a clockwise continuation, while v refers 
to a counterclockwise continuation. Since the pro­
cedures involved in effecting these two types of con­
tinuations are essentially the same, we confine our 
discussions mainly to the amplitudes in sheet u. 

Analytic continuations of two-particle amplitudes 
across two-particle unitarity branch cuts have been 
considered quite extensively in the literature.12-17 The 
problem is generally not made more complicated with 
the inclusion of multiparticle amplitudes in the con­
sideration, if one assumes the usual unphysical unitarity 
condition, and if no dynamical singularities enter the 
two-particle region. The simplicity is evident from 
(2.12)-(2.14) where, for s in the region (N+ix)2<s 
<(N+2fj,)2, the integral terms are irrelevant. The 
results of the continuation are that the two-particle 
branch cut connects two Riemann sheets and that the 
amplitudes in the unphysical sheet are 

Au(s) = A (s)ll+2iPl(s)A (s)l-\ (3.5a) 

Bu(sifr) = B(s9a)Zl+2iPl(s)A (s)]"1, (3.5b) 

Cu (s,o-y) = C (s ,*,*') - 2iPl (s)B (s,o)B fotr') 
X [ l + 2 f P l ( ^ ( . ) ] - 1 . (3.5c) 

Clearly, these amplitudes have poles at those values 
of s where l+2iPi(s)A(s) vanishes. If the poles are 
near the section (N+n)2<s< (N+2n)2 of the real axis, 
they represent unstable particles. 

Before we proceed to consider the continuation across 
the inelastic section of the unitarity cut, let us first 
make the obvious remark that the two-particle elastic 
amplitude a(<r) can, in the same manner as A(s)} be 
continued across the elastic section of the unitarity cut 
in the <J plane. The amplitude in the unphysical sheet is 

au(a) = a(<T)ll+2iPl(cx)a(a)J-1. (3.6) 

We assume that the irN channel has an unstable particle 
in the 1=0 state so that aa(<r) has a conjugate pair of 
poles at ar=M2 and M2*, where18 

l+2iPl(M
2)a(M2)=l+2iPl(M

2*)a(M2*) = 0. (3.7) 

In a realistic situation, this unstable particle would 
correspond to the resonance in the / = § , /= •§ state of 
the TTN system. 

In the unphysical sheet u reached by a clockwise 
continuation across the section (N+2fi)2<s< (N+3/JL)2 

of the unitarity cut,19 the amplitudes are required to 
satisfy along that section of the real axis the following 
conditions: 

Au(s-) = A(s+), BU(S-,<T) = B(S+,<T), 

Cu{s—} cr, or') = C(s+, a, <jr). 
(3.8a) 

The limits of integrations over cr" in (2.12)-(2.14) 
restricts the value of cr" to be less than (N+2tx)2 when 
s is less than (N+Sfx)2] consequently, we may write 

a(a"+) = au(a"-), (3.8b) 

where au{v") is given by (3.6). With pi and p2 expressed 
in terms of s—, (2.12) becomes, for (N+2/j)2<s 

Au(s-)-A(s-)=-2iPl(s-)A(s-)Au(s-)-2i 1 

0 

d*"P2(s-,<n") 

Xa(a"-)au(a"-)B(s- <x")Bu{s-,c"). (3.9) 

Similar expressions follow for (2.13), (2.14), and (3.4). We can analytically continue these equations into the 
complex s plane, and obtain 

A(s)-2i da"p2{s,<n")a(a")auW')B{s,<r")Bu{s,a") L (3.10) 

[ /*<U(8) - j 

B(s,<r)-2i d<T"P2(s,<rl")a(v")au(<T")Cu(s,<T,<r")B(s,<T") , 
/•ffl(s) 

Bu(s,a) = B 0 ? , c r ) [ l - 2 * p i ( s ) A , ( s ) ] - 2* / da"p2(W)«(o-")««(*")C(S,<T,<T")BU(s/r"), 
J ffQ 

/.<ri(s) 

Cu(j,«r,ff') = C(s,<r,<r')- 2iPl(s)B(s,a)Bu(S,<J')- 2* / <fcr"p*(*,<rj")«(»")««(<r")C0>,cr,<r")Cu(*,</>'). 

(3.U) 

(3.12) 

(3.13) 

12 J. Gunson and J. G. Taylor, Phys. Rev. 119, 1121 (1961); 121,343 (1961). 
13 R. Oehme, Phys. Rev. 121, 1840 (1961); Z. Physik 162, 426 (1961); Nuovo Cimento 20, 334 (1961). 
14 R. Blankenbecler, M. L. Goldberger, L. S. MacDowell, and S. B. Trieman, Phys. Rev. 123, 692 (1961). 
16 W. Zimmermann, Nuovo Cimento 21, 249 (1961). 
16 P. G. O. Freund and R. Karplus, Nuovo Cimento 21, 519, 531 (1961). 
17 R. C. Hwa and D. Feldman, Ann. Phys. (N. Y.) 21,453 (1963). 
18 For definiteness we let M have a negative imaginary part. 
19 This sheet is, of course, different from the one defined by (3.5). However, we continue to use the label u for this sheet, since we 

shall not be concerned again with that sheet reached by continuation across the elastic unitarity cut of the 5 channel. 
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I t has been shown by Stapp,1 Dragt and Karplus20 

that the singularities at the thresholds of states in­
volving an even number of particles are square-root 
branch points, while the ones at the thresholds of states 
involving an odd number of particles are logarithmic 
branch points. Thus, the branch cut in the s plane 
between (N-\-JJL)2 and (N-\-2p,)2 connects two Riemann 
sheets, while the cut between (7Vr+2ju)2 and (N+3fj)2 

connects an infinite number of sheets. This is due 
essentially to the fact that pi(s) has a squarerroot 
branch point at s= (N+p,)2, but p2(s,or/') returns to 
its original value after s is taken in a circuit around the 
point (N-\-2p)2

y as can most easily be seen in the a" 
plane. 

I t is evident from (3.10)-(3.13) that the amplitudes 
Au(s), Bu(s,a), and Cuis^a^) have end-point singu­
larities at s=sa^ (ikf+/x)2, where the upper limit, a*iC?), 
of the integration over <J" reaches the pole of au(cr") at 
a"=M2. This is the threshold of a branch cut which we 
place in parallel to the real axis. I t corresponds to the 
7rM channel in the intermediate state, and therefore is 
referred to as the complex unitarity cut. Continuation 
across this cut is considered in a later section. 

There are also other branch cuts in the complex 
plane of sheet u due to the singularities of the 
amplitudes in the physical sheet. A discussion of them 
is deferred until after we have considered the pertinent 
dynamical singularities of A (s), B(S,<T), and C(s,cr,<rf). 

We now want to find a formal solution to the coupled 
integral equations (3.10)-(3.13) and determine the 
condition under which a pole may appear in sheet u. 
We assume that all the amplitudes on the physical 
sheet are known. Because of (3.6), au(<r) is also con­
sidered as known. Writing Bu(s,a) as 

Bu(s,cr) = P(s,<r)Zl-2iPl(s)Au(s)l9 (3.14) 

we see that, because of (3.12), 0(s,a) satisfies the 
equation 

/»<ri(s) 

P(s,a) = B(s,ff)-2i / do"P2(s,<n") 
J <TQ 

Xa(cr'f)au(<rff)C(s,cryf)P(s,<r"), (3.15) 

to which the solution is 

/•oi(s) 

&{s,a) = B{s,<r)+ / da"r(s,a,<T")B(s,a"), (3.16) 
J (TO 

where T (s,a,af/) is the resolvent for the kernel 

i T ( 5 , < r y O = - 2 t p 2 ( W / ) a ( O a « ( O C ( ^ , e r , / ) . (3.17) 

The resolvent can have poles at isolated values of s 
where the Fredholm determinant vanishes; clearly, at 
these values of s, P(s,a) also has poles. Similarly, from 
(3.13), we obtain 

Cu fogy/) = 7 fooyr') - 2ifil (s)p (s,a)Bu (s,af), (3.18) 
20 A. J. Dragt and R. Karplus, Nuovo Cimento 26, 168 (1962). 

where 

y(s,<ry) = C(s,<r,<r') 

/

oi(a) 

d<r"r(s,<r,<r")C(s,<T",a'). (3.19) 

Now, using (3.10), (3.14), (3.18), and the definition 
that 

/

OlO) 

da"p2(s,^") 

Xa(a")au(<r")B(s,a"Msy'), (3.20) 
we have 

Au(s) = tA(s)-2iF(s)yD(s), (3.21) 

Bu(s,<r) = 0(s,<r)/D(s), (3.22) 

Cu(s,<ry)==7(s,<T,a')--2ip1(s)(32(s,<T)/D(s), (3.23) 

where 
D(s)=l+2iPl(s)[A(s)-2iF(s)1. (3.24) 

I t is evident from these equations that the amplitudes 
in the unphysical sheet u have poles when D(s) vanishes, 
and that there are no other poles whose positions depend 
only on s. That the latter statement is true also for 
Cu(s,<r,<T') can be more easily seen in (3.11) than in 
(3.23). Thus, a pole in the resolvent T(S,(T,<T") does not 
lead to any singularities in the amplitudes. 

Some parenthetical remarks may be made to compare 
this problem with one in which both of the two channels 
under consideration have only two particles each. If 
we use P2C?) to denote the phase-space factor in the 
second two-particle channel and C(s) to represent the 
partial-wave-scattering amplitude in that channel, then 
it can be shown that the quantity T(s), which corre­
sponds to the resolvent T (S,<J,<J") in the present problem, 
is -2iP2(s)C(s)/[l+2ip2(s)C(s)~]. Thus, a pole in T(s) 
is due to a zero in the S matrix of the second channel; 
this pole does not appear in the unphysical sheet that 
is reached by continuation across the two-channel cut 
(which corresponds to sheet u in the present problem) 
but is in sheet IV defined by Oehme.13 Vanishing of the 
denominator D(s) corresponds to the zeros of the 
determinant of the two-channel S matrix; if they occur 
near the real axis above the second threshold, the 
corresponding poles in the amplitudes are associated 
with unstable particles which are coupled to both 
channels. 

On account of the integrals in F(s), P(s,<r), and 
y(s,<r,<r'), there are branch cuts in Au(s), Bu(s,a), and 
Cu(s,or,(T') that are not present in the amplitudes on 
the physical sheet. This is a distinct property asso­
ciated with analytic continuations across multiparticle 
unitarity cuts. 

IV. DYNAMICAL SINGULARITIES 

The dynamical, left-hand singularities of two-particle 
scattering amplitudes generally must lie in the un-
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physical region of the physical sheet, i.e., to the left of 
the physical threshold. This is not true for amplitudes 
involving three or more particle states, as is well known. 
In this paper we are interested in studying the singu­
larities that are in the physical region; in particular, 
we want to investigate those that give rise to singu­
larities in the unphysical sheets which we have 
considered. 

For the amplitude C{s^,(jf) consider the diagram of 
one-nucleon exchange, as shown in Fig. 1. If the dis­
connected process TwD2 were included in the three-
particle scattering amplitude, then this diagram would 
represent a certain term in the unitarity condition 
corresponding to the connected part of the disconnected 

FIG. 1. One-nu-
cleon-exchange dia­
gram for the ampli­
tude TzzG'{sy(T)<T'). 

diagrams.1,2 In our case, where the disconnected process 
is excluded, this diagram must be introduced as a 
"Born term" of the scattering amplitude. I t has the 
form 

T5Z
B(s,<Ty) = Za(a)a(<r/)/k(s)a)k(s,a/)']Qj(z), (4.1) 

where Qj(z) is the Legendre function of the second kind, 
and z is defined by 

2s(N2~a,-fx2)+(s+a,-(x2)(s-a+fj2) 
z— — 

{!>- (*1/2+M)2][*- ( ^ - M ) 2 ! * - (a'^+rfTs- (*'1/2--M)2]} 1/2 
(4.2) 

The function k(s,cr) is given by (2.18). In view of (2.11), 
the contribution to the amplitude C(s,a,a') from this 
Born term is 

CB ( W ) = Ik {s,a)k (S,<T')-]-1QJ (S). (4.3) 

The Legendre function Qj(z) has branch points at 
2=db l . Their locations in the s plane are, according to 
(4.2), 

s±(<rS) = g±(g*-kyi\ (4.4) 
where 

g = = i [ ( T + ( r /_ 7V 2+2M 2+((T- .M 2 ) (^~M 2 ) /^ 2 ] , 

* = - ( ( r _ / x 2 ) ( ( 7 / _ M 2 ) + ( ( r + ( T ^ 2 M
2 ) ( ^ - M

4 ) / ^ 2 . 

In the special case when <T=O-', 

S+(<T,<T) = 2(<T+»2)-N2, 

S-(a,<r)=(a-»2)2/N2. 

When <T and a' are both at their respective physical 
thresholds, (N+n)2, s+ coincides with s- at the over-all 
physical threshold, s= (N+2fx)2. This is to be expected 
since at this energy the intermediate state of the process 
in Fig. 1 is on the mass shell. For cr, a'< (N+JJ,)2, we 
have s±< (N+2/JL)2 and s+>s^. On the other hand, for 
<r, <r'>(N+n)2, we have s±>(N+2n)* and s+<s„. 
When <r=a' = (N+2JJL)2, S± is in the neighborhood of 
(N+4:fji)2. Thus, we see that for a certain range of 
physical values of cr and <r' the short-branch cut asso­
ciated with this Born term is on the real axis above the 
physical threshold of the three-particle system. Obvi­
ously, the unphysical sheets which we have considered 
in the previous section are reached by analytic con­
tinuations that avoid this cut. When the difference 
between a and af is sufficiently large, s±(<r,(rf) become 
complex. Our aim is to investigate how singularities 
such as these affect the two-particle elastic scattering 
amplitude and the production amplitude. 

We note that, when either ex or a' is at the threshold 
o"o, the two branch points s±((r,0-') coincide; the common 

position in the s plane (for <r' = cro) is at 

*±(er,er0) = Z(<T+!xNWl2-if-]/N. (4.6) 

This equation may be inverted to yield the corre­
sponding position in the <r plane for a given value of s: 

«r±(*,<ro)= (sN+v?)/(N+»)-nN. (4.7) 

These expressions are useful later on when we perform 
analytic continuations. 

I t is important to ascertain that CB(S,<J,<J') has no 
discontinuities across the real axes of the a and a7 

planes in the physical regions. This property can be 
obtained most readily in the .? plane if we put the 
kinematical cuts, due to the branch points of k(s,o) 

(4.5) and k(s,<r'), between (CT^+M) 2 and (o-'1/2+ju)2, and 
between (<r1/2—/*)2 and (anf2—/i)2. In the a plane the 
branch cut between co= (N+fx)2 and <ri(s)= (s1/2—JJL)2 

should not be on the real axis but should be placed 
either above or below both a+ and a—, depending upon 
whether s has a positive or negative imaginary par t ; 
otherwise, a discontinuity in a would result. Similar 
consideration follows for the <jf variables. 

In the case of the production amplitude B (s,<r) there 
can also be a one-nucleon-exchange diagram, as shown 
in Fig. 2. The corresponding singularities in the s plane 
can be found in just the same way as for CB(s,<r,<rf); in 
fact, we need only put a' equal to N2 in (4.2)-(4.4). 
Denoting the branch points for this Born term BB(s,<x) 
by s±(a), we have 

s±(<T)~g±(g2-h) 1/2 (4.8) 

FIG. 2. One-nucleon-
exchange diagram for 
the amplitude T2d(s,<r). 
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(N-^)2 (v^-/x.) € 
S-(cr) where 

S + (cr} 

(N+^u)2 U/SF + f t ] 2 

FIG. 3. A branch 
cut for B(s,o) in the 
s plane. 

7 = § [ 2 5 + M
2 - ( 5 - M 2 ) M 2 / i V 2 ] , 

*?= o-v)2+y(s+iv2- 2M
2) (l-^/iv2). 

(4.11) 

where 

^=( < T- J U 2 ) 2 +M 2 (^+^ 2 - 2M 2 ) ( 1 -M 2 / ^ 2 ) . 
(4.9) 

I t is interesting to note that if (4.8) is solved for ( r a s a 
function of s, we regain the same expressions as (4.8) 
and (4.9) except that the roles of a and s are inter­
changed. That is, 

er±(*H7=F(f2-f7)1/2, (4.10) 

For a in the interval (N—IA)2<<J< (N+/J,)2, s±(a) are 
real and are in the same interval (N—fj)2<s< (N+fx)2 

in the s plane with s+(tr) being greater than S- (or). When 
o- is continued to a value greater than (N+n)2, the 
branch points enter into the complex part of the s plane 
before reaching the threshold s= (N+fx)2. If <r has a 
small positive imaginary part, then s+ (a) is in the lower 
half plane, while s-(<r) is at a conjugate point in the 
upper half plane. These points are interchanged if a 
has a small negative imaginary part. Now, the Cauchy 
representation for B(s,<r) in the s plane, taking BB(s,a) 
as the only left-hand cut, has the form 

B(sya) = BB(s: 
i r 

,*)+- / ds'-
pi(s'+)B(s'+,*)Av(s'+) 1 

7T J ( ]V+2M) 2 

where the last term represents the dispersion integral 
beginning at the production threshold, (N+2jx)2. In 
view of the fact that the first integral starts at the 
elastic threshold (N+y,)2, the dynamical cut that joins 
s+(cr) with s-(a) must be distorted to avoid the branch 
point at s~ (2V+/-02, when a is continued to a value 
greater than o-0. This is illustrated in Fig. 3. I t can be 
verified that the property B(s,a+) = B(s, a—) is 
preserved. 

There are also other Born-type diagrams for the 
production amplitude. One of them is the one-pion-
exchange diagram shown in Fig. 4. A number of 
studies5-6,21 has been made on the analyticity of the 
production amplitude B(s,a)), taking into account only 
this interaction as the driving force. I t is reasonable in 
this case to consider the amplitude B(s,ca), where co, 
denned in (2.1), is the square of the c m . energy of the 
two-pion system. I t has been found that this interaction 
produces anomalous threshold which extends into the 
complex s plane. 

One can also investigate the effect of this interaction 
on the amplitude B(s,<r), although it is somewhat more 
complicated because the a channel does not represent a 
convenient pair of particles in the final state of that 
diagram. Since the partial-wave amplitudes correspond 
to a projection of the full scattering amplitudes, which 
selects only the part that involves physical scattering 
angles, they do not contain all the singularities of the 
full amplitudes. The different pairings in a three-particle 

«- g x c : : : : } FIG. 4. One-pion-
exchange diagram 
for the production 
amplitude. 

21 V. L. Tepiitz, Physics Department Technical Report No. 270, 
University of Maryland, 1962 (unpublished). 

S' — s 

(4.12) 

state then correspond to considering different regions 
of the over-all physical sheet spanned by all the inde­
pendent invariant variables. I t is, therefore, expected 
that the singularities in B(s,o) are different from those 
in B(s,a)) even for the same diagram. However, if one 
is interested in the effect of the production amplitude 
on the two-particle elastic scattering amplitude, there 
is no need to consider the same diagram in two different 
ways. The simpler choice of B suffices, since A (s) is 
independent of a and co. For this reason we do not 
duplicate here the consideration of the one-pion-ex-
change diagram. 

We briefly discuss two other simple diagrams shown 
in Fig. 5. The particle m, if unstable, corresponds to a 
pole in the unphysical sheet of the two-pion scattering 
amplitude. In the case of Fig. 5(a), B(s,<r) is the con­
venient amplitude to study; the pole is in the usual t 
variable. The associated branch cuts in the s plane are 
along the negative real axis and in the unphysical region 
of the complex plane; these cuts are far to the left of the 
physical threshold, especially if m is assigned a mass as 
large as that of the p particle. The amplitude for the 
diagram in Fig. 5(b) has a pole in the co variable and, 
therefore, does not contribute to any partial-wave 
amplitudes other than the ones involving the S state 
of the co channel. This pole term, however, gives rise to 
branch cuts for all waves in the a channel. In fact, 
properties of the amplitude for the diagram in Fig. 5 (b) 
can be inferred from those associated with Fig. 5(a), 
if the variables s and <r are interchanged. For m having 
the mass of p, the trajectories of the branch points in 
the s plane, as <x is varied from N2 to a physical value, 
prescribe approximately a semicircle whose center is in 
the neighborhood oi s^N2 and whose radius is as large 
as 4iV2; the branch points start at conjugate points in 
the complex plane and approach the real axis sym­
metrically toward the right along the semicircle. Since 
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T 9" r 

J" ______ ^ 
FIG. 5. Two simple N 

diagrams involving (a) 
particle m. w 

— ^ O — r 
N W N 

(b) 

the singularities associated with both diagrams of Fig. 
5 are so far away from the region of interest to us, 
(N+2fi)2<s<(N+3fj)2

> we do not consider them any 
further. 

V. SINGULARITIES IN THE UNPHYSICAL SHEETS 

We now examine how the singularities that we have 
considered in the last section affect the analytic 
properties of the amplitudes in the unphysical sheets. 
I t is evident from (3.5) that all branch cuts in the 
physical sheet result in branch cuts also in the un­
physical sheet that is reached by continuation across 
the elastic section of the unitarity cut. However, we 
are concerned in this paper, exclusively, with the 
unphysical sheets which are associated with the three-
particle intermediate state of the unitarity condition 
and with the complex unitarity cut. 

Consider first the amplitude Cu(sy<rya
f)y which satisfies 

the integral equation (3.13). The upper limit of inte­
gration over <r" depends upon the value of s; as ^ is 
varied, the contour of integration can be deformed so 
long as it avoids all singularities in the a" plane. We 
have already considered the end-point singularity sa, 
where <ri(s) coincides with the pole of au(a"); it is the 
threshold of the wM complex unitarity cut. There are 
other singularities in the a" plane, among which are 
those due to the Born term of C(syay<r") shown in Fig. 1. 
The locations of the branch points, denoted by cr±"(s9<r)y 

can be obtained from the equation for s±(<r,<r")} i.e., 
Eq. (4.4), by expressing a" in terms of s and a. I t is 
clear from (4.2) that the denominator of z(s,<r,<r") 
vanishes as <r" approaches (s1/2—y)2\ hence, except for 
some unphysical value of a, the upper limit of inte­
gration, <7"i(s), when different from a0y can never be 
reached by the branch points a±"(sya) which corre­
spond to z= dbl. In fact, for physical values of s and a, 
<r±"(s,<r) cannot be greater than (s112—/x)2 in magnitude 
as can be inferred from (4.7), while on the other hand 
it must be greater than (N+fi)2 for s> (o-1/2+/*)2. It , 
therefore, follows that <r±"(sya) must be in the region 
between cr0 and a\(s). 

As we have mentioned in the last section, in order to 
guarantee that CB(s, <r, (x"+) = CB(sy a, a"—), the 
branch cut between <r0 and <ri(s) must not be placed on 
the real axis of the <r" plane even in the limit of $ 

approaching a real value. Since (3.13) is obtained as a 
result of s being continued from s— [cf. (3.9)], this 
cut should be a continuous deformation of the one 
placed below the real axis. As instructed by the sub­
script / of a" in the argument of pi in (3.13), the contour 
of integration is on the left side of the cut when viewed 
from a0 to ai(s). The important question to answer is 
on which side of the contour the singularities (r±"(s,o) 
are located. 

Before answering this question, we first recall that 
the singularities j±(<r,(j,/) in the .? plane coincide at 
S=(N+2/JL)2 when 0-=<r"=<ro, and that they become 
distinct and both increasing as a and <y" are continued 
to physical values; the cut between them lies entirely 
in the physical region. In determining the locations of 
the corresponding singularities cr±"(s,<r) in the a" plane, 
we must make certain that the result is compatible 
with the properties in the s plane described above. We 
fix s at a physical value and follow the movement of 
a±"(sy<r) as a is varied. The continuation should not 
commence at a value of a less than o-0 because the 
corresponding branch points <r±"(s,<r) in the cr" plane 
are at some complex positions whose real part is greater 
than <r±(s,<ro), which is defined by (4.7) and is slightly 
less than or\(s); the cut connecting these branch points 
must be deformed to avoid the contour of integration 
ending at <ri(s). As or is continued to a value above <ro, 
this cut encloses the end point cri(s) while the branch 
points (r±"(sy<r) approach the real axis from opposite 
sides; the resultant branch cut is not compatible with 
the analyticity in the s plane. 

The proper continuation should start at a value of <r 
in the range a±(sya0) <a <(Ti(s); at this value of <r, s is 
greater than (<r1/2+/,t)2 and is consequently still in the 
physical region. The corresponding branch points 
(T±r{sy(r) in the a" plane are to the left of the threshold 
<70. As a is decreased, these singularities move to the 
right and stay on the upper or lower side of the contour 
of integration depending upon the sign of the small 
imaginary part of 5. For s in the lower half plane, 
a±"(sycr) are on the lower side of the contour, although 
these singularities may be on either side of the kine-
matical cut between <XQ and <ri(s). When a reaches <TO, 
the branch points coincide at <r±"(syao)y which, ac­
cording to (4.7), has a negative imaginary part ; the 
contour of integration on the real axis, therefore, remains 
on the upper side of the singularities. These properties 
are compatible with the analyticity in the s plane. 

When ^ is continued to certain complex values in the 
lower half plane such that the branch points <r±"(s,<r) 
coincide with the pole of au(a") at M2 in the or" plane, 
pinching the contour of integration in between, we have 
coincidence singularities in the amplitude Cu(sycrya

;) 
as a function of s. Let us denote their locations in the s 
plane by s±(<ryM

2). Since the singularities <r±"(sy<T) are 
on the right side of the contour, pinching is possible 
only when the pole M2 is on the left. This implies that 
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FIG. 6. Paths of 
continuation in the 
s plane are indicated 
by dashed line on the 
right. On the left are 
the corresponding 
contours of integra­
tion in the a" plane. 
Open lines indicate 
branch cuts. 

© 

o-i(S) 
Sb X c 

(c) 

Cu(s,aya
f) can have branch points at s±(a,M2) in the 

lower half of sheet u only below the TTM cut, not above. 
For certain values of cr, s^(cr,M2) may enter into the 
region above the nM cut from below; this singularity 
is then in the unphysical sheet uv if we label the sheet 
reached by a counterclockwise (clockwise) continuation 
across the irM cut with uv (uu). Symmetry of C(s,o-,(r') 
under the interchange of <r and <r' implies that Cw(s,cr,</) 
has branch points also at s±(M2,a') below the TTM cut 
in sheet u and possibly above the TM cut in sheet uv. 

The complex unitarity cut is associated with a 
channel that has only two particles, the pion and the 
unstable particle M. The corresponding phase-space 
factor p2(s,M2) has a square-root branch point at 
s—sa=(M+fi)2. Thus, we expect that the wM cut 
connects only two sheets. We consider more explicitly 
the problem of continuation across this cut in the next 
section and show that the sheets uu and uv are, indeed, 
identical. Meanwhile, we continue to distinguish 
between uu and uv, since the distinction should be 
helpful in clarifying the mechanism that gives rise to 
the singularities in that unphysical sheet. 

The fact that CwOy,cr",cr') is singular at s±((r"yM
2) 

implies that there are branch points in the cr" plane at 
a±

fr(s,M2) for certain values of s. When s is at sa, 
<r±"(sa,M

2) are on the left side of a0 and slightly above 
the real axis. An end-point singularity results in 
Cw(s,cr,</) when these branch points reach the threshold 
or0. As we have mentioned in connection with (4.6), 
this occurs at one value of s, which is 

sb^s±(a0iM
2)^Z(M2+fxN)a0^-~tx^/N. (5.1) 

This singularity is very close to sa, which we join with 
Sb by a short branch cut. 

I t is now clear that if s is continued to the region 
below the TTM cut in sheet u along a path which avoids 
the singularities at sa and sb by passing them on their 
left, then the pole M2 in <r" plane is on the left aide of 

the contour of integration viewed in the direction from 
<ro to CTI(S), while the branch points <r±

f'(s,M2) move to 
the right side of the contour. Thus, pinching of the 
contour is possible when these singularities coincide, 
as shown in Fig. 6(a); in the s plane the coincidence 
singularities are located at s±(M2

yM
2) in sheet u. On 

the other hand, if the path of continuation in the s 
plane goes across the cut between sa and sb, passing 
sa on its lower side and Sb over its top, then both M2 

and cr±"(s,M2) are on the left side of the contour of 
integration; pinching is, therefore, impossible. This 
situation is shown in Fig. 6(b). We are not concerned 
with the unphysical sheet defined by this continuation. 

Consider now the continuation that passes both sa 

and Sb on their right. See Fig. 6(c). In this case, we 
enter into the unphysical sheet uu as we cross the irM 
cut from above. According to what we have found 
above, the domain that can be reached by this con­
tinuation (i.e., the regions above the TTM cut in sheet 
u and below the irM cut in sheet uu) does not contain 
any singularities at s±(v,M2) and s±(M2,</). This 
implies that a±"(s,M2) are not branch points in the 
o-" plane for 5 in this domain, and that there is no 
pinching of contour as a±

n(s,M2) approach M2. Hence, 
the points s±(M2,M2) are regular in sheet uu. 

An illustration of the locations of the branch cuts in 
sheet u is given in Fig. 7, where M is taken to be the 
complex mass of the 3-3 resonance; a and vf are given 
arbitrary values in the range between (i\f+/z)2 and 
(N+2fx)2. I t is evident from (3.13) that Cw(s,cr,c/) also 
has the branch cuts of B(s,cr) and B^s,^). Poles can 
only occur at the zeros of D(s), defined in (3.24). 

Analyticity in the unphysical sheet v and the others 
connected with it can be studied in just the same way. 
Since, in this case, a complex value of s is reached by 
continuation from s+ Qn the interval (N+2fi)2<s 
<(iVr+3/u)2], the branch points <T±"(S,<T) are on the 
left side of the contour of integration in the a" plane. 
Thus, the singularities in sheet v are mirror reflections 
across the real axis of those in sheet u. 

Let us now consider the analyticity of Bu(s,o). For 
the Born term of B(syo) we take only the one corre­
sponding to the diagram in Fig. 2. The associated 
branch points are at s±(a), as defined in (4.8) and as 
shown in Fig. 3. I t is clear from the inhomogeneous 
term of (3.11) or (3.12) that Bu(s,a) also has branch 
points at s±(cr). A consideration of the contribution 
from the integral term requires that we turn to the u" 
plane again. Equation (4.10) gives the singularities of 
BB(sy<r") in the cr" plane for a given value of s; let us 
denote them by <r±f(s) here. One can show that, when 
s is real and greater than (iVr+2ju)2, <r±"(s) are at 
complex-conjugate positions whose real part is greater 
than (N+2fj)2- (2y?/N)(l+3fx/4:N). As s is continued 
away from the real axis, <r±"(s) do not go to the region 
between <r0 and <ri(s), so they never pinch the contour 
when they approach M2. Consequently, s±(M2) are 
not singularities of B%(syo), However, due to the. 
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FIG. 7. Branch cuts of CM(s,oy/) in the 5 plane. 

presence of Cn{s,<r^n) inside the integral in (3.11), 
Bu(s,a) does have branch points at s±{a,M2) and 
s±(M2,M2). The amplitude in the unphysical sheet uu, 
denoted by Buu(s,o), does not have branch points at 
s±(M2,M2) for the same reason that they are not in 

Since Bu(s,a") is singular at (T" = <T±"(S,M2), it is 
evident by inspection of (3.10) that Au(s), not Auu(s), 
has branch points at s±(M2,M2). In addition, Au(s) 
has, of course, all the branch cuts of A (s), which must 
be in the unphysical region to the left of the irN 
threshold. 

One of the essential results of this study is that the 
short branch cut between s+(M2,M2) and S-(M2,M2) 
is only in sheet u, and not in sheet uu. As a consequence 
of the coupling between the channels by unitarity, it 
is not only in the amplitude CU(S,O;<T'), but also in Au(s) 
and Bu(s,o). Since the region below the irM cut in 
sheet u can be reached from the real axis only by going 
around the threshold sa, it is farther away from the 
physical section of the unitarity cut than the corre­
sponding region in sheet uu. The singularities s±(M2,M2) 
are, therefore, not expected to have any dominant 
effects on the elastic and production amplitudes in a 
direct way; however, as we see in Sec. VII, a significant 
influence can be exerted indirectly. 

VI. CONTINUATION ACROSS THE COMPLEX 
UNITARITY CUT 

We have, in a sense, already considered the con­
tinuation across the wM complex unitarity cut. Using 
(3.10)-(3.13), we have analytically extended the domain 
of definition of Au(s), etc., to the region below the wM 
cut by continuing s from above. In that way we have 
entered into the unphysical sheet uu and found that 
the amplitudes are regular at s=s±(M2,M2). However, 

the amplitudes obtained in this procedure are denned 
by integral equations whose contour of integration, in 
effect, forces a downward distortion of the irM cut. In 
this section we find the integral equations which are 
defined for 5 entirely in sheet uu. 

Let s be a complex value of s which is situated on 
the complex unitarity cut. Thus, we have Res 
> R e ( M + M ) 2 and Ims- Im(M'+ /x ) 2 <0 . Let s+ ( § - ) 
indicate the value of s just above (below) this cut. 
Since the existence of this cut is independent of the 
variables a and a', we have for any values of a and af 

Au(s+) = Auu(s~), 

Bu(s+, a) = Buu(s—, or), 

Cu(s+, <r, o-/) = Cuu(s~, a, </), 

Au(s-)---=Auv(s+), 

Bu(s—, o) = Buv(s+, a), 

Cu(s—, <r, <r') = CUv(s+, 0-, af). 

Suppose we evaluate 5 in (3.10) at a particular value 
s+; the contour of integration in the v" plane then 
passes by the pole M2 on its upper side. We now push 
this contour across the pole onto its lower side, thus 
picking up a term which is22 

(6.1) 

I danp2{sJal
ff)a(af')au{aff)B{s,(j

ff)Bu{s+,cT'f)y (6.2) 

where C\ is a small, closed contour clockwise around 
<J" = M2. Let X be the residue of the pole of au{<r") at 
M\ i.e., 

>M2: (6.3) au(cr//) = X/(cr / /-Jf2) , as 0 

then (6.2) yields 

-27r iX P 2 ( s - , M 2 )a(M 2 )^(§ ,M 2 )5 w w (s - , M2). (6.4) 

Although sh is the location of a singularity in sheet 
u, it is a regular point in sheet uu. Thus, the contour 
Ci in the a" plane, after moving past the pole at M2, 
corresponds to a trajectory in the s plane which leads 
from the real axis to s— and lies entirely in sheet uu. 
Equation (3.10), originally evaluated at s = s + , is now 
expressed in terms of s— with the contour of integration 
lying below M2; continuing s away from s— into sheet 
uu, we have 

Auu (s) = [ l+2fp i (s)A (5)]-1 A (s)-4Tr\P2(s,M2)a(M2)B(s,M2)Buu(s,M2) 

<ri(«) 

2* / da"P2 (s,<ri")a (<r")a„ («")B {S,<J")BUU {sj') . (6.5) 

In exactly the same way, we can obtain the other amplitudes in sheet uu. They are 

JBMM(5,cr) = 5 ( ^ < T ) [ l - 2 i p 1 ( 5 ) ^ M M ( S ) ] - 4 f f X p 2 ( i ) M 2 ) a ( M 2 ) C ( 5 , c r , l f 2 ) J B u u ( ^ ^ ) 

/

eri(s) 

i 2i\ da"P2(s,al'')a(<T")au(a'%(s,a,a")Buu(sy'), (6.6) 

22 I t can be shown from a dispersion relation for B(s,a-), such as (4.12) with its last term written out, that B(s,<r) has no cut along s 
for real or complex a. 
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Cuu (s,<?,<?') = C (s,<rS) - 2iPl (s)B (s,<r)Buu (*,*') - 4TTXP2 {s,M*)a {M*)C (s,a,M2)Cuu (s,MW) 

r0l(«) 

J ffQ 

da"P2(s,al'0a(a'0au(cr'%(s,*y%uu(sy',<T'). (6.7) 

Evaluating (6.6) and (6.7) at a=M2, we can solve for Buu(s,M2) and Cww(s,M2,cr'), which can then be used to 
reduce these equations. After some straightforward manipulations we obtain 

t r<n(s) - i 

A'(s)-2i d<j"pi{s^l")a{c")au{c")B'{s,<T")Bun{s,v") , (6.8) 

Buu(s^) = B'(s,ir)ll-2ip1(s)Am(s)2-2ij fa"t>l(ssrl")a{fF")au(<F")C'{s,<r,<r")Bn{s,<r"), (6.9) 

CuuCW) = C(s,*,a')-2iPl(s)B'(s,a)Buu(s,*')-2% / d*"p2(W)<* (*"K(* '%'{S,CT,<J")CUU(V V ) , (6.10) 
./<r0 

where 
^ ' (*) = ^ ( * ) + G ( * ) 3 2 ( ^ 2 ) , (6.11) 

B' (s,a) = J5 M + G ^ C (s,cr,M2)£ (^if2), (6.12) 

C'(s,ay) = C(s,ay)+G(s)C(s,a,M*)C(s,M2,<T'), (6.13) 

-47rXp2(^M2)a(M2) 
G ( J ) = . (6.14) 

l+47rXp2feM2)a(ikf2)C(^M2,M2) 
Notice that (6.8)-(6.10) have the same form as that which is reached from sheet u by a counterclockwise 
of (3.10)-(3.13), the difference being that the ampli- continuation across the complex unitarity cut. The 
tudes on the physical sheet are modified on account of resultant integral equations are exactly the same as 
the unstable particle. (6.8)-(6.10), with the subscripts uu being replaced by 

I t is not obvious from these equations that there are uv. To show that the solution of these coupled equations 
no singularities at s±(M2,M2) in sheet uu. Since G(s) is unique so that the amplitudes in sheets uu and uv are 
involves C(s,lf2,if2), the functions A', Bf and C" are identical, we merely have to prove that 
singular at s±(M2,M2). However, in view of the pro­
cedure by which (6.8)-(6.10) are derived, there is no B(s,<r)^Buu(s,<r) — Buv(s,<r) 
doubt that the singularities of the inhomogeneous and 
the integral terms at these points cancel, leaving the vanishes everywhere in the s plane. The identities of 
amplitudes Auu(s), etc., analytic there. the other amplitudes follow immediately. I t is straight-

One can similarly derive the amplitudes in sheet uv forward to establish from (6.8) and (6.9) that 
r l ( s ) ~ T 2iPl(s)B'(s,<T)B'(s,cr")-] 

B(s,a)=-2i / daffp2(s)al
fOa(a,,)au(<T,/)B(sy,)\ C'(S,*,<T") . (6.15) 

7.o L l+2iPl(s)A'(s) J 
Nonzero solutions of this equation exist at most for are then given by (3.21)-(3.23) with the appropriate 
isolated values of s where the resolvent has poles. Since change of A(s) to A'(s), etc. Poles in this sheet are 
B(s,cr) is an analytic function in s, it must therefore located at where D'(s) vanishes, Df(s) being the 
vanish identically. Thus, we have shown that the counterpart of D(s); in general, D(s) and Dr (s) do not 
complex unitarity cut associated with the -wM channel vanish at the same values of s. 
connects only two sheets. This is not surprising in view 
of the fact that the channel has only two particles and yil. THE RESONANCE POLE 
that the phase-space factor p2(^,M2) has a square-root 
branch point at 5= (M+fi)*, as we have already ob- S m c e t h e singularities s±{M\M2) are located m the 
served in the last section. unphysical sheet u, they are not effective in enhancing 

Since the integral equations (6.8)-(6.10) are just the the scattering amplitudes along the physical region of 
same as (3.10), (3.12), and (3.13) except that A(s) is the real axis in the s plane. In this section we see how 
replaced by ^4'(s), B(s,<r) by Bf(s,cx), and C(S,<T,<T') by these singularities can affect the analyticity in sheet 
C'foo-jO-'), the solutions for the amplitudes in sheet uu uu; in particular, we investigate the condition under 
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which a resonance pole can occur in the vicinity of these 
singularities. 

The integral equations for the amplitudes in sheet 
uu are given by (6.8)-(6.10). The functions A'(s), 
Z?'(s,cr), and C'(s,<r,a') are expressed in (6.11)-(6.14) 
in terms of amplitudes on the physical sheet, which are 
presumed known. A complete calculation cannot be 
made at present in view of our ignorance about many 
of the singularities on the physical sheet. However, in 
the vicinity of the branch cut between s+(M2,M2) and 
s_(M2,M2), the amplitudes are dominated by the 
effects of this cut; it is, therefore, possible to make some 
remarks about the amplitudes there. 

From (6.14) we see that G(s) has a pole when the 
denominator A(s) vanishes, where 

A(s) = l+4:T\P2(s,M2)a(M2)C(s,M2,M2). (7.1) 

We assume that A(s) has at least one zero in the finite 
s plane and denote its position by sp. If sp is near 
s±(M2,M2), its value can be calculated from (7.1) where 
C(s,M2,M2) may be approximated by CB(s,M2,M2) 
which is known according to (4.3). The quantity a(M2) 
is also known on account of (3.7); the residue A is 
directly proportional to the width of the resonance in 
a(o). Although the exact location of sp is not crucial in 
the following analysis, we suppose that it is in the near 
neighborhood of s±(M2,M2). In the static limit, the 
branch points s± (M2,M2) coincide and become a pole in 
CB(s,M2,M2); the smallness of \p2(s,M2)/pi(M2)\ in 
this region implies that A(s) must vanish in the close 
vicinity of this pole. We do not expect this feature to 
be grossly altered in the relativistic case. 

The vanishing of A(s) results in a pole at sp in each 
of the amplitudes A'(s), B'(s,<r) and Cf(s,<j,af). For 
s^sp, we can write 

A'(s) = Ra/(s-sp), B'(s,<r) = Rb(*)/(s-sp), 

C(s,<T,<jf) = Rc{<j,a')/{s-sp), 

where Ra, Rb(<r) and Rc(<r,a') are the appropriate 
residues. Our next step is to investigate whether these 
primed amplitudes can generate a pole in the unphysical 
sheet uu in the neighborhood of sp. 

As we have mentioned at the end of the previous 
section, the amplitudes Auu(s), etc., have the same 
formal solutions as those of Au(s), etc., provided that 
A(s), B(s,o), and C(s,<ry<r') are replaced by A'(s), 
Bf(s,o), and C'(s,<T,<rf), respectively. A pole in sheet uu 
occurs when Df{s) is zero, where 

D'(s) = l+2iPl(s)£A'(s)-2iF'(sn (7.3) 

/»<ri(a) 

0' 0,<r) = B' (s,a) - 2i / da"p, for,") 

Xa(a")au(a'')C'(s,<Ty')pf(s,a"). (7.5) 

We assume that the resolvent for the kernel of the 
integral equation (7.5) does not have a pole23 in a 
region around sp so that fi'(s,(r) is approximately 
constant in that region, having the value (3'(sp,a) which 
satisfies the equation 

/•o-l(sp) 

Rb(a)-2i\ d<j"p2{sp,<Ji") 

Xa(<7")au(a")Rc(a,a")p'(sp,<T") = 0. (7.6) 

Thus, in the neighborhood of sP, F'(s) has the form 

F' (s) =v/ (s-sp), (7.7) 
where 

/

<ri(sp) 

d(Tffp2{Sjh(Tin) 

Xa(*")au(a")Rb(<r")pf(sp,a"). (7.8) 

The zero of Df(s) can now be found by use of (7.3); 
if it is located near sp, its position is at sr, where 

sr~sp—2ipi(sp)[_Ra—2iip~]. (7.9) 

This is the position of a pole which is present in each 
of the amplitudes Auu(s), Buu(s,(r), and CUu(s,&,<?')• If 
it is not too far away from the real axis, it produces a 
resonance in the physical amplitudes for elastic scat­
tering and production. If the last term of (7.9) is not 
small, then that equation is not valid a more elaborate 
calculation for s r is necessary. 

The exact position of the pole obviously depends 
upon the values of the residues Ra, Rb(<r), and i?.c(cr,a-'), 
which, in turn, depend upon the nature of the inter­
actions between the particles. Indeed, a detailed cal­
culation with the spins and the isotopic spins of the 
particles properly taken into account remains to be 
done. However, since \p2(sp,M

2)\^\pi(M2)\<Kl, we 
can make the following remarks without carrying out a 
complete dynamical calculation. We see not only that 
sp is expected to be near s±(M2,M2), but also that the 
magnitudes of the residues should be small, so the 
position of the resonance pole, if it occurs, should not 
be very far from sp and s±(M2,M2). I t is important to 
notice that the locations of s±(M2,M2) depend only on 
the masses of the particles, whereas sr depends also on 
the interactions between the particles. We expect that 
the pole of the resonant amplitude is in the sheet uu 
between s±(M2,M2) and the TM cut; being close to the /><nO) 

7 ' ( * ) = / • 
J an 

da"p2(s,^") 

Xa(a")au(<r")B'(s,a")l3'(s,a"), (7.4) 

23 The implication of a pole in the resolvent has been discussed 
at the end of Sec. III . 
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real axis, it is, therefore, the resonance pole which gives 
rise to a resonance in the physical region. For the 
nonresonant amplitudes any such pole must be below 
s±(M2,M2) and significantly farther away from the 
real axis; its residue must be small so that it results in 
no enhancement in the physical amplitudes. 

VIII. CONCLUSION 

Working with scattering amplitudes involving two-
and three-particle states, and without making specific 
approximations with regards to the isobar formation 
in the final state (thus without replacing the a variables 
by M2, the isobar mass squared, at the outset), we have 
determined the singularities of the elastic and pro­
duction amplitudes in the unphysical sheets reached 
by continuation across the inelastic section of the 
unitarity cut. We have found the existence of the 
complex unitarity cut associated with the wM channel 
in the intermediate state. The dynamical singularities 
related to the process ir+ir-\-N -^"TT+TT+N with the 
exchange of a nucleon have been studied in detail. I t 
is found that they induce other singularities in the 
unphysical sheet, among which the most notable ones 
are s±(M2,M2); these branch points are associated with 
the unphysical process7 TT-\-M —>w+M in which N is 
exchanged. 

A principal result of this investigation is that 
s±(M2,M2) are below the TM cut in the unphysical 
sheet u, but not in sheet uu, which is reached from the 
former by continuation across the irM cut. Since the 
irM cut is situated between s±(M2,M2) and the real 
axis, these branch points cannot directly affect the 
physical scattering processes, as they otherwise could 
if they were in sheet uu. 

We have further derived the general condition under 
which a pole can occur in sheet uu. While the actual 
existence of such a pole depends on the dynamics of 
problem, i.e., the interaction forces for the various 
states of the scattering process (an aspect of the problem 
which we have not considered), we have given argu­
ments, mainly on kinematical grounds (in the sense 
that M is regarded as a kinematical quantity), that if a 
resonance pole is to occur, it is most likely to be in the 
neighborhood of s±(M2,M2). Since it can be near the 
real axis, enhancement of the scattering amplitudes in 
the physical region is, therefore, possible. 

Putting M equal to 1238—i 45 MeV which corre­
sponds to the position and width of the 3-3 resonance, 

we find that 

5+(M2,M2)= (114.7—i 11.6V, Wi-= 1485- i 74 MeV, 

s„(M2,M2)= (133.3—f 19.9)M
2, w-= 1605—i 118 MeV, 

where w± are defined to be \j±(M2,M2)']112- Let us 
compare these values to the position and width of the 
second resonance ( / = i , / = f " ~ ) m the TTN system: 
Mr= 1512—i 70 MeV. We see that a resonance pole in 
sheet uu just above s±(M2,M2) is therefore located at 
the appropriate position in the s plane to be responsible 
for the second resonance. 

Similar considerations can be applied to other 
problems involving three-particle states, such as the 
3w and the 2w+Y systems. In each of these problems 
one can continue across the three-particle unitarity cut 
and find a complex cut associated with the channel 
consisting of one original particle plus an unstable 
particle which can decay into the other two particles. 
This complex unitarity cut connects only two sheets. 
An investigation of the singularities in these unphysical 
sheets can very likely shed some light on the dynamical 
origin of any resonances observed at energies where 
these three-particle states are physical. Thus, for 
example, the co particle must be attributable to a 
resonance pole in the unphysical sheet u on the left 
side of the wp cut. Its position must be influenced 
mainly by the branch cut related to the diagram of 
7r-p scattering with the exchange of an co; a self-con­
sistent calculation is evidently needed here. In the case 
of the 27T+F system, it is clear that a resonance pole 
induced by the singularities at s±(M"2,M"2), where 
M" is the complex mass of Fi* (1385) and A is the 
exchanged particle, can give rise to a higher resonance,24 

which may be identified with the one recently ob­
served25-26 at 1660 MeV. 
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